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1) The problem of sampling target distributions. Real
world examples.
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What is a ’target distribution’ ?

We will call a ’target distribution’ a probability
distribution of the form:

η(dθ) := e−V (θ)π(dθ)/Z .

given explicit up to a normalization constant Z (standard
Monte Carlo jargon/terminology).
π(dθ) a reference probability distribution that can be
cheaply and exactly Monte Carlo simulated. Example:
normal i.i.d. .
V (θ) ∈]−∞,+∞] a given computable function given as
a black-box. This means that one is given a numerical
routine evaluating θ 7→ V (θ) and perhaps θ 7→ ∇θV (or
higher).
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What is a ’target distribution’ ?

η(dθ) := e−V (θ)π(dθ)/Z .

with Z :=
∫
e−V (θ)π(dθ). E.g. π i.i.d. normal seq. .

Problem (Sampling target)

Numerically estimate the normalization Z .
Monte Carlo simulate a sample (Θ1, . . . ,ΘN) with

1
N

N∑
n=1

δΘn(dθ) ≃ η(dθ)

.
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Cartoon (to have in mind)

Figure: Double-well potential function θ 7→ V (θ)

Figure: Target distribution η ∝ e−Vπ (π uniform) with MC sample
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Difficulties

Cost: V (θ) evaluation is computationally intensive.
High dimension: θ ∈ Rd with d ≫ 1.
Peaky multimodality of η . Similar to non-convex
optimization:

Lemma
If V has unique global π-essential minimum θ∗:

lim
β→+∞

e−βV (θ)π(dθ)/Zβ = δθ∗(dθ)

Pb: where is θ∗ ?
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Example 1: low temperature equilibrium mechanics

θ ∈ R3M positions of M atoms in space.
Target = Equilibrium distribution of a (non-quantum,
thermostatted) mechanical system.
π(dθ) = dθ is phase-space/uniform measure of indep.
atomic positions.
target = Gibbs distribution = η(dθ) = e−βV (θ)dθ/Zβ, V
is Hamiltonian/interaction energy, β is inverse
temperature.
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Example 2 (rare event): robustness of Machine
Learning

θ := image.
Problem: study the robustness of a Deep Neural Network
(DNN) classifier1.
If f : {images} → [0, 1]{animals} is a DNN classifier, we
want to study the failure of recognizing a Panda.
Model: π(dθ) = N(θpanda, εId) = small variance Gaussian
distribution centered at a Panda image.

1Furon Tit R. Efficient Statistical Assessment of Neural Network
Corruption Robustness NEURIPS
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Example 2 (rare event): robustness of Machine
Learning

Misclassification event θpanda + noise ∈ Miss defined by:

argmax(f (θpanda + noise)︸ ︷︷ ︸
∼π(d θ)

) ̸= panda

Target distribution is random model conditioned by
misclassification (V (θ) = 0 if θ ∈ Miss else = +∞):

e−V (θ)π(dθ)/Z = 1θ∈Missπ(dθ)/p

Normalisation is the rare event probability:

p =

∫
1θ∈Missπ(dθ) = P(Misclassification)
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Example 3: Bayesian statistics

Reference distribution on parameter space with explicit
easily simulated prior probability π(dθ).
Explicit parametric model of partial noisy observations.
E.g. d-dimensional :

Y = T (θ) + N(0, εIdd) ∈ Rd

For some real observations tobs, the target is the
”posterior” distribution defined by Bayes formula :

Lawπ(Θ | Y = tobs) = e−|tobs−T (θ)|2/2επ(dθ)/Z =: η(dθ)
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Example 3: Bayesian statistics

Monte Carlo sampling the posterior distribution yields
estimation of a typical true parameter.
Importantly Sampling the posterior distribution yields
uncertainty quantification on the statistical inference.
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Example 3: Bayesian conductivity estimation
problem

Temperature field T ∗
θ : Ω → [0,+∞[ solution of the

elliptic parametric Partial Differential Equation :{
−divx(κθ(x)∇xT

∗
θ (x)) = f0 x in Ω

T ∗
θ = 0 at boundary ∂Ω

Model:
Ω := domain of the plane.
κθ(x) =

∑Q
q=1 θq1x∈Ωq > 0 := uncertain thermal

conductivities at x ∈ Ω. Ωq ⊂ Ω are sub-domains
("blocks").
f0 := (constant) heating source in Ω.
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Example 3: Bayesian conductivity estimation
problem

Let πprior(dθ1 . . . dθQ) denotes the manufacturer’s prior
probability distribution modeling this uncertainty (e.g.:
i.i.d. log-normal).

(a) Typical πprior (b) Typical under πprior
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Example 3: Bayesian conductivity estimation
problem

Observation of an atypically large temperature :

(a) Observation points
x1, . . . , xJ with normal errors
N(0, ε).

(b) Atypical temperature =
typical posterior

Goal: Monte Carlo sample the Bayesian posterior
distribution (e.g. maximum temperature). .
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2) Basic Monte Carlo samplers for target distributions
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2.1) Markov Chain Monte Carlo
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Markov Chain Monte Carlo

Definition (MCMC)

A Markov chain simulated with Θn+1 = F (Θn,Un+1) with
(Un)n i.i.d. having η = e−Vπ/Z as a unique invariant
distribution : Law(Θn) = η ⇒ Law(Θn+1) = η. Moreover
computing F (θ, u) only requires evaluation of V (θ) and/or
∇V (θ).

Ex.: F given by Metropolis rejection algorithm .
Ex.: Discretization of dΘt = −∇ΘtVdt +

√
2dWt .

Ex.: Velocity jump Piecewise Deterministic Markov
Process.
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Mixing problems of MCMC

How fast (if true !) one has:

Law(Θn)
speed ?−−−−→
n→+∞

Law(Θ∞)︸ ︷︷ ︸
=η(dθ)=e−βV (θ)π(dθ)/Z

Problem 1: η is multi-modal with unknown localization of
modes (e.g. V has multiple ’peaked’ local minima). The
chain is typically stuck in modes (’meta-stability’):

θ 7→ V (θ) :
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Mixing problems of MCMC

Problem 2: strong anisotropy. Typical in high dimension.
E.g. the spectrum of HessθV is badly conditioned,
extremal eigenvalues satisfy:

λmin(HessθV )

λmax(HessθV )
≪ 1

MCMC rejection rate (or stability if unadjusted)
constrains the fastest and most local scales:

Figure: Horizontal: slow variable; vertical: fast variable
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2.2) Importance Sampling



Sampling targets Basic Monte Carlo samplers SMC for target distributions Model Reduction Frugal Sampling

Basic Importance Sampling (IS):

Method (Basic IS = weighting)

Sample N i.i.d. ’clones’ (Θ1, . . . ,ΘN) with distribution
the reference (easy to sample) π.
Compute weights and estimate the normalisation Z as:

ZN :=
1
N

N∑
n=1

e−V (Θn)︸ ︷︷ ︸
=:Wn

Estimate the without bias non-normalized target with:

γN(dθ) :=
1
N

N∑
n=1

WnδΘn(dθ).
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Basic Importance Sampling (IS):

Unbiasedness.
By the law of large number, a.s.,

ZN a.s.−−−−→
N→+∞

Z :=

∫
e−V (θ)π(dθ) = normalization

and

γN(φ)
a.s.−−−−→

N→+∞
γ(φ) :=

∫
φ(θ)e−V (θ)π(dθ) = un-normalized target

for all integrable φ.
TCL etc...
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Weight problems of IS

In the case of a rare event: V : Rd → {0,+∞}, clones
get a weight 0 or 1 so that

E[♯ {n : Wn = 1}] = Np

where p is the probability of the rare event. tiny fraction
(given by p) of clones involved, small effective sample
size.
Nasty in high dimension (High dimensional geometry ⇒
probabilities tends to be singular with each other ).
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3) Sequential Monte Carlo for target distributions
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Flow of targets

Idea (Flow of target distributions)

Instead of trying to sample directly η(dθ) = e−V (θ)π(dθ)/Z
one constructs a continuous flow of target distributions:

β 7→ ηβ(dθ) := e−V (θ,β)π(dθ)/Zβ,

with β 7→ V (θ, β) continuous and:

V (θ, 1) = V (θ), V (θ, 0) = 0.

E.g. here tempering:

e−βV (θ)π(dθ)/Zβ
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Main steps

Use Importance Sampling (clone weighting) to modify the
target current distribution.
Duplicate clones with large weights and kill those with
small.
Use Markov Chain MC to de-correlate clones (while
sustaining target distribution).
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Main SMC algorithm (target sampling pb.)

Scheme (SMC for target distributions)

β0 = 0. N clones (Θ1
0, . . . ,Θ

1
N)i.i.d. with dist. π. Pick

β1 < . . . < βimax . Iterate on i = 1 . . . imax:
(i) Weights (Importance Sampling): update the
’importance sampling weight’ of each replica n ∈ [1,N] to
next target : e−βiVdπ:

W n
i := W n

i−1 × e(βi−1−βi )V (Θn
βi−1

)

(ii) Selection of clones according to weights (see after).
(iii) Mutation (MCMC): modify (’mutate’) each clones
with Markov Chain leaving invariant the new target
e−βiVdπ/Zβi

=: ηβi
.
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Mitigation of problems

Figure: One SMC step between V0 and V1. V1 must be close
enough to V0, and mutation mixes only locally.
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Main SMC algorithm (target sampling pb.)

Estimators:
Target measures ηβ = 1

Zβ
e−βV (θ)π(dθ) are estimated by

empirical sample

ηβi
≃ ηNβi

:=
1
N

N∑
n=1

δΘn
βi
.

Normalizations are estimated by the product of average
weights over replicas

Zβi
≃ ZN

βi
:=

i∏
i ′=1

1
N

N∑
n=1

Wn
βi
≃

i∏
i ′=1

Zβi′

Zβi′−1
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Selection schemes

Definition (Selection or re-sampling scheme)

Require: N clones with non-negative weights
(W 1, . . . ,W N) ∈ RN

+.
Do:

Draw branching (cloning) numbers (B1, . . . ,BN) ∈ NN

for each clone:

E
[
Bn | (W 1, . . . ,WN)

]
= N × W n∑N

m=1 W
m

with constraint B1 + . . .+ BN = N.
Kill any clone n if Bn = 0. If Bn > 1, Bn − 1 clones of n.
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Example of selection scheme: systematic/wheel
resampling

Figure: N = 8, Green: weights of old clones, Black arrow: new
clones



Sampling targets Basic Monte Carlo samplers SMC for target distributions Model Reduction Frugal Sampling

Unbiasedness and Adaptivity

Lemma (SMC unbiasedness)

Non-normalized estimators are unbiased: for each i :

E

ZN
βi

1
N

N∑
n=1

δΘn
βi︸ ︷︷ ︸

=:γN
i

 = e−βiVdπ

Proof.
The process i 7→

∫
Qi→imax (θ, dθ

′)γN
i (dθ) is a martingale. Q is

the Feynman-Kac semi-groups of the Markov Chains steps
weighted by the Importance weights for N = 1.
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Unbiasedness and Adaptivity

Law Large Number, Central Limit Theorem, .... (see .e.g.
Pierre Del Moral).
In practice use adaptivity to tune the ladder (βi)i⩾1 (e.g.
to obtain exactly a 90%× N effective sample size after
selection).
Use adaptivity to tune the Markov Chain MC mutations.
Adaptivity → O(1/N) bias and open maths questions.
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Computational cost problem

Partially solves the multi-modality and high dimension
problem.
Pb.: Very large number of evaluation of θ 7→ V (θ)/∇θV .
E.g.: typical: N = 100 clones × 100 levels, × 10 MCMC
steps = 105 evaluations + memory.
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4) Model reduction with reduced basis
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Model problem: thermal block problem

Temperature field T ∗
θ : Ω → [0,+∞[ solution of the

parametric Elliptic Partial Differential Equation :{
−divx(κθ(x)∇xT

∗
θ (x)) = f0 x in Ω

T ∗
θ = 0 at boundary ∂Ω

Model:
Ω := domain of the plane.
κθ(x) =

∑Q
q=1 θq1x∈Ωq > 0 := uncertain thermal

conductivity at x ∈ Ω. Ωq ⊂ Ω given sub-domains
("blocks").
f0 := (constant) heating source in Ω.
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Model problem: thermal block problem

Numerical Solution "low insulation".

Numerical Solution "high insulation".

Figure: Left: conductivities (dark=small), Right: Temperature field
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Model Reduction: Reduced Basis

Assume K ’exact’ solutions (snapshots) are given
T ∗

θ(1), . . . ,T
∗
θ(K) for K different θ ∈ RQ (Q := number of

blocks).
How can one compute quickly an approximate solution Tθ

for any value of θ ?
Variational formulation of the PDE

T ∗
θ := argmin

T

1
2

∫
Ω

κθ |∇T |2 − f0T

Same thing as in linear algebra (A symmetric):

T = A−1F0 = argmin
T

1
2
⟨T ,AT ⟩ − ⟨F0,T ⟩
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Model Reduction: Reduced Basis

Lemma (Reduced Basis)

Assume that the quantities
∫
Ωq

∇T ∗
θ(k) · ∇T ∗

θ(k ′) and∫
Ωq

f0T
∗
θ(k) are given for 1 ⩽ q ⩽ Q blocks and 1 ⩽ k , k ′ ⩽ K

snapshots, then solving for any θ ∈ RQ the finite dimensional
Reduced basis (RB) solution:

T
(K)
θ = argmin

T∈span(T∗
θ(1),...,T

∗
θ(K)

)

1
2

∫
Ω

κθ |∇T |2 + f0T

requires O(K 3 + QK 2) operations.
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Reduced Basis: A posteriori error computation

Lemma (RB a posteriori error)

Assume that the quantities
∫

div(1Ωq∇T ∗
θ(k))div(1Ωq′

∇T ∗
θ(k ′))

and
∫
Ωq

∇f0 · ∇T ∗
θ(k) are given for 1 ⩽ q, q′ ⩽ Q blocks and

1 ⩽ k , k ′ ⩽ K snapshots, then computing for any θ ∈ RQ the
following Reduced basis (RB) a posteriori error estimate:

E (K)(θ) := ∥div(κθ∇ (T ∗
θ − Tθ))∥L2(Ω)

requires only O(Q2K 2) operations, and in particular does not
require the exact solution T ∗

θ .
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Reduced Basis: greedy-like strategies

Remark (RB greedy improvement)

Example: θ(K + 1) := argmaxθ∈S E
(K)(θ).
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Model problem: thermal block problem

Numerical Non-typical (for θ different from θ(k),
k = 1 . . .K ) Solutions:

(a) 7 snapshots (b) 65 snapshots

Figure: UpLeft: exact T ∗
θ , UpRight: reduced Tθ

BottomLeft: error E (θ)

→ snapshots must be well-adapted .
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5) Frugal Sampling of Posterior (or Rare Event)
distributions
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Bayesian conductivity estimation problem

Let π(dθ) = πprior(dθ1 . . . dθQ) denotes the
manufacturer’s prior probability distribution modeling this
uncertainty (e.g.: i.i.d. log-normal).

Figure: Typical under πprior
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Bayesian conductivity estimation problem

Observation of an atypically large temperature :

(a) Observation points
x1, . . . , xJ with normal errors
N(0, ε).

(b) Atypical observed
temperature x 7→ tobs(x).

Want: infer the posterior distribution of conductivities
and e.g. supx T

∗
Θ.
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Bayesian sampling problem (atypical observation)

Solution: Monte Carlo sample the posterior probability
distribution (Bayes rule):

η∗posterior(dθ)
:= Lawπ(Θ | (TΘ(xj) = tobs(xj) + N(0, ε))j=1...J)

=
1

Z (tobs)
e−

∑J
j=1

1
2ε (tobs(xj )−T∗

θ (xj ))
2
π(dθ)

Atypical observation2: Ent(η∗posterior | π) ≫ 1 with
perhaps log-likelihood with local minima.

2(Ent=relative entropy = Kullback-Leibler divergence)
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Importance Sampling with reduced posterior

Our methodology (Adaptive Reduced Tempering – ART)
is based on the (Sequential) Monte Carlo sampling of the
reduced posterior (frugal) flow:

η
(k)
β,posterior(dθ) :=

1
Z (k)(tobs)

e−
∑J

j=1
β
2ε (tobs(xj )−T

(k)
θ (xj ))

2
πprior(dθ)

β ∈ [0, 1] is the tempering parameter (interpolates
between prior β = 0 and posterior β = 1).

T
(k)
θ is computed for any θ with reduced basis based on k

snapshots: T ∗
Θ(1), . . . ,T

∗
Θ(k).
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Importance Sampling with reduced posterior

Key idea: Increase tempering β and number of snapshots
k at the same time.
For each k , one needs to find3 an adapted β̂k+1:

find next β̂k+1 s.t.: Ent(η∗
β̂k+1,posterior | η

(k)

β̂k+1,posterior
) ≃ δ0(given)

Lemma (meta) (Diaconis Chatterjee 2018)

The cost of Importance sampling of target η by proposal π is
given by exp(Ent(η | π)).

Practice: η∗β,posterior(dθ) too expensive. Replaced (thanks
to a posteriori error estimation) by frugal pessimistic
ansatz: |T ∗

θ (x)− tobs(x)| →
∣∣∣T (k)

θ (x)− tobs(x)
∣∣∣+E (k)(θ)

3Ent = relative entropy = K.-L. divergence.
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Importance Sampling with reduced posterior

The inverse temperature β̂k+1 can be interpreted as an
approximate critical β for the matching between exact
η∗β,posterior and reduced η

(k)
β,posterior.

One can then use a learning function in order to sample a
new snapshot (Θ(k + 1),T ∗

Θ(k+1)) with current clones:

SMC sample Θ(k + 1) according to
1
Z

eτE
(k)(θ)η

(k)

β̂k+1,posterior
(dθ)

The parameter τ > 0 favors parameters θ with a large
error E (k)(θ) (under-represented in previous snapshots
Θ(1) . . .Θ(k)).
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Importance Sampling with reduced posterior

Pseudo-Code (Adaptive Reduced Tempering algorithm)

Sample N i.i.d. parameters according to πprior(dθ)
While β̂k < 1, Sequential Monte Carlo sampling of flow:

β 7→ η
(k)
β,posterior(dθ)

until η(k)
β̂k+1,posterior

diverges from η∗
β̂k+1,posterior

(use a

posterior error E (k)).
Sample new snapshot (Θ(k + 1),T ∗(Θ(k + 1)) within
clones with distribution η

(k)

β̂k+1,posterior
.

Compute T ∗
Θ(k+1) and iterate k → k + 1
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Numerical Results [C.,H.,R. 2023 and 2024])
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Numerical Results [C.,H.,R. 2023 and 2024])

Kolmogorov-Smirnov (KS) distance (to "truth") of the
distribution of maximum temperature supx∈Ω TΘ(x):

(a) Typical a posterior
temperature field

(b) KS distance versus
computational log-cost for
AdaptiveRedcuedTempering
versus Non-Reduced
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Numerical Results [C.,H.,R. 2023 and 2024])

Computational gain here: ∼ 10 for given precision
In terms of exact eval.: 150 snapshots evaluation
(Reduced Tempering) versus 105 snapshots (nonReduced)
Potential gain here ∼ 5000 if true model ∞ expensive.
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