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1) The problem of sampling target distributions. Real
world examples.
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What is a "target distribution’ 7

o We will call a 'target distribution’ a probability
distribution of the form:

n(df) .= eV r(dg)/z.

given explicit up to a normalization constant Z (standard
Monte Carlo jargon/terminology).

e 7(df) a reference probability distribution that can be
cheaply and exactly Monte Carlo simulated. Example:
normal i.i.d. .

e V(0) €] — 0o, +0o¢] a given computable function given as
a black-box. This means that one is given a numerical
routine evaluating 6 — V/(#) and perhaps 6 — V,V (or
higher).
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What is a "target distribution’ 7

n(dh) .= eV Or(dh)/Z.
with Z .= [e VO r(df). E.g. 7 i.i.d. normal seq. .

Problem (Sampling target)

@ Numerically estimate the normalization Z.

@ Monte Carlo simulate a sample (©1,...,0y) with

5D do, (d6) = n(d6)

n=1
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Cartoon (to have in mind)

Figure: Double-well potential function 6 — V()
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Figure: Target distribution 7 oc eV 7 (7 uniform) with MC sample
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Difficulties

@ Cost: V/(#) evaluation is computationally intensive.
e High dimension: § € RY with d > 1.

@ Peaky multimodality of . Similar to non-convex
optimization:

If V' has unique global w-essential minimum 6,:

lim e ?VOr(dg)/z; = 6y, (d6)

B—+o0

Pb: where is 0, ?
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Example 1: low temperature equilibrium mechanics

.---.--'1“"‘!) = a(
ZQQ ” ’*e:ua

e § € R3M positions of M atoms in space.

e Target = Equilibrium distribution of a (non-quantum,
thermostatted) mechanical system.

@q'-‘

e 7(df) = df is phase-space/uniform measure of indep.
atomic positions.

e target = Gibbs distribution = 7(df) = e #V¥dg/Z5, V
is Hamiltonian/interaction energy, /3 is inverse
temperature.
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Example 2 (rare event): robustness of Machine
Learning

@ 0 := image.

@ Problem: study the robustness of a Deep Neural Network
(DNN) classifier!.

o If f: {images} — [0, 1]{2nma!s} js 3 DNN classifier, we
want to study the failure of recognizing a Panda.

e Model: 7(d0) = N(fpanda, €1d) = small variance Gaussian
distribution centered at a Panda image.

1Furon Tit R. Efficient Statistical Assessment of Neural Network
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Example 2 (rare event): robustness of Machine
Learning

e Misclassification event 6,042 + noise € Miss defined by:

argmax(f (0panda + noise)) # panda
—— —

~7(d )

@ Target distribution is random model conditioned by
misclassification (V(0) = 0 if § € Miss else = +o0):

e VO(dh)/Z = Lpeniss(dO)/p

@ Normalisation is the rare event probability:

p= /lgeMissW(dH) = P(Misclassification)
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Example 3: Bayesian statistics

@ Reference distribution on parameter space with explicit
easily simulated prior probability w(d6).

@ Explicit parametric model of partial noisy observations.
E.g. d-dimensional :

Y = T(0) + N(0,eldy) € R?

@ For some real observations t,, the target is the
"posterior” distribution defined by Bayes formula :

Law,(© | Y = tops) = e_‘tObs_T(e)lz/%ﬂ(dQ)/Z =: n(d6)
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Example 3: Bayesian statistics

@ Monte Carlo sampling the posterior distribution yields
estimation of a typical true parameter.

@ Importantly Sampling the posterior distribution yields
uncertainty quantification on the statistical inference.
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Example 3: Bayesian conductivity estimation
problem

@ Temperature field T : Q — [0, +oo[ solution of the
elliptic parametric Partial Differential Equation :

—divy(ke(X)Vx T5(x)) = fo x in Q
T, =0 at boundary 02

e Model:

o Q := domain of the plane.

o rp(x) = Zg):l q1xeq, > 0 := uncertain thermal
conductivities at x € . Q4 C 2 are sub-domains

("blocks").

e fy := (constant) heating source in Q.
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Example 3: Bayesian conductivity estimation
problem

o Let mpior(dbs ... dfg) denotes the manufacturer's prior
probability distribution modeling this uncertainty (e.g.:
i.i.d. log-normal).
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(a) Typical mprior (b) Typical under mpyior
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Example 3: Bayesian conductivity estimation
problem

@ Observation of an atypically large temperature :

1.0

08
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04

02

0.0

(a) Observation points 00 02 04 06 08 10
X1,...,%; with normal errors (b) Atypical temperature =
N(0,¢). typical posterior

@ Goal: Monte Carlo sample the Bayesian posterior
distribution (e.g. maximum temperature). .
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2) Basic Monte Carlo samplers for target distributions
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2.1) Markov Chain Monte Carlo
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Markov Chain Monte Carlo

Definition (MCMC)

A Markov chain simulated with ©,.; = F(©,, U,.1) with
(Up)n i.id. having n = e~V7/Z as a unique invariant
distribution : Law(©,) = n = Law(©,,1) = 1. Moreover
computing F(6, u) only requires evaluation of V(6) and/or
Vv V(0).

@ Ex.: F given by Metropolis rejection algorithm .
e Ex.: Discretization of d©, = —Vg, Vdt + V2dW,.

@ Ex.: Velocity jump Piecewise Deterministic Markov
Process.
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Mixing problems of MCMC

@ How fast (if true !) one has:

Law(0,) 2<% Law(0.)
n—-o00 N ——

=n(df)=e=FV(O)r(db)/Z

@ Problem 1: 7 is multi-modal with unknown localization of
modes (e.g. V has multiple 'peaked’ local minima). The
chain is typically stuck in modes ('meta-stability’):

60— V(0):
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Mixing problems of MCMC

@ Problem 2: strong anisotropy. Typical in high dimension.
E.g. the spectrum of HessyV is badly conditioned,
extremal eigenvalues satisfy:

Amin (Hessg V)
Amax(Hessg V)

MCMC rejection rate (or stability if unadjusted)
constrains the fastest and most local scales:

e

Figure: Horizontal: slow variable; vertical: fast variable
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2.2) Importance Sampling



Basic Monte Carlo samplers
000000800

Basic Importance Sampling (1S):

Method (Basic IS = weighting)

@ Sample N i.i.d. ‘clones’ (©,...,0y) with distribution
the reference (easy to sample) 7.

@ Compute weights and estimate the normalisation Z as:

1
N ._ -~ —V(©))
L = N ZGR/—/
n=1 =W,

o Estimate the without bias non-normalized target with:

N
1
N A
YM(d0) = & n}_lj W,do, (d6).




Basic Monte Carlo samplers
000000080

Basic Importance Sampling (1S):

@ Unbiasedness.

@ By the law of large number, a.s.,

zZN NL> 7 = /ev(g)w(dﬁ) = normalization
—+oo

’YN(SO) ﬁ Y(p) = /g@(@)e_v(e)w(de) = un-normalized ta
—+00

for all integrable .
o TCL etc...



Basic Monte Carlo samplers
000000008

Weight problems of IS

@ In the case of a rare event: V : RY — {0, +oc}, clones
get a weight 0 or 1 so that

E[g{n: W, =1} = Np

@ where p is the probability of the rare event. tiny fraction
(given by p) of clones involved, small effective sample
size.

@ Nasty in high dimension (High dimensional geometry =
probabilities tends to be singular with each other ).
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3) Sequential Monte Carlo for target distributions
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Flow of targets

|dea (Flow of target distributions)

Instead of trying to sample directly n(df) = e~V x(d0)/Z
one constructs a continuous flow of target distributions:

B ns(d6) := &V *P)r(d6)/Z;,
with 5 +— V/(0, 3) continuous and:

V(6,1) = V(0),  V(0,0)=0.

E.g. here tempering:

e PVOr(de)/ Zs



SMC for target distributions
00800000000

Main steps

@ Use Importance Sampling (clone weighting) to modify the
target current distribution.

@ Duplicate clones with large weights and kill those with
small.

@ Use Markov Chain MC to de-correlate clones (while
sustaining target distribution).
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Main SMC algorithm (target sampling pb.)

Scheme (SMC for target distributions)
Bo =0. N clones (0}, ...,04)i.id. with dist. 7. Pick
fr<...< B lterateon i =1...ipa:

@ (/) Weights (Importance Sampling): update the
'importance sampling weight’ of each replica n € [1, N] to
next target : e #Vdn:

W e W x oP VIS

o (ii) Selection of clones according to weights (see after).

o (iii) Mutation (MCMC): modify (‘'mutate’) each clones
with Markov Chain leaving invariant the new target
e PVdr /Zs =: ng,.
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Mitigation of problems
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Figure: One SMC step between Vg and V4. Vi must be close
enough to Vp, and mutation mixes only locally.
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Main SMC algorithm (target sampling pb.)

Estimators:
o Target measures 75 = e ~BV(O7(do) are estimated by
empirical sample

1 N
M, =y =5 D Oy
n=1

o Normalizations are estimated by the product of average
weights over replicas

N i 1 N i Zg,
Zo =~z =52 Wi~ 1l

i'=1 n=1 i’=1 ﬁ/ 1
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Selection schemes

Definition (Selection or re-sampling scheme)
@ Require: N clones with non-negative weights
(wt, ..., wh)y e RY.
e Do:

o Draw branching (cloning) numbers (By, ..., By) € NV
for each clone:

Wn

E|B"| (WY ... W) =Nx —
? N
D ome W

with constraint By + ...+ By = N.
o Kill any clone nif B, =0. If B, > 1, B, — 1 clones of n. |
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Example of selection scheme: systematic/wheel

resampling

Figure: N = 8, Green: weights of old clones, Black arrow: new
clones
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Unbiasedness and Adaptivity

Lemma (SMC unbiasedness)

Non-normalized estimators are unbiased: for each /:

N
1
N BV
E ZB"_N Eléegi =e drm

The process i — [ Qi (0, d0")yN(d0) is a martingale. Q is
the Feynman-Kac semi-groups of the Markov Chains steps
weighted by the Importance weights for N = 1. ]
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Unbiasedness and Adaptivity

@ Law Large Number, Central Limit Theorem, .... (see .e.g.
Pierre Del Moral).

@ In practice use adaptivity to tune the ladder (3;);>1 (e.g.
to obtain exactly a 90% x N effective sample size after
selection).

@ Use adaptivity to tune the Markov Chain MC mutations.

@ Adaptivity — O(1/N) bias and open maths questions.



SMC for target distributions
0000000000@

Computational cost problem

e Partially solves the multi-modality and high dimension
problem.

@ Pb.: Very large number of evaluation of 8 — V/(0)/V,V.

e E.g.: typical: N = 100 clones x 100 levels, x 10 MCMC
steps = 10° evaluations + memory.
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4) Model reduction with reduced basis
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Model problem: thermal block problem

@ Temperature field T, : Q — [0, +oc[ solution of the
parametric Elliptic Partial Differential Equation :

—divy(ke(X)Vx T5(x)) = fo x in Q
T, =0 at boundary 09

e Model:
e Q := domain of the plane.
o ro(x) = Z(?:l 0q1xeq, > 0 := uncertain thermal

conductivity at x € Q. Q4 C Q given sub-domains
("blocks").

o fy := (constant) heating source in Q.
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Model problem: thermal block problem

@ Numerical Solution "low insulation".
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@ Numerical Solution "high insulation".
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Figure: Left: conductivities (dark=small), Right: Temperature field
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Model Reduction: Reduced Basis

@ Assume K 'exact’ solutions (snapshots) are given

blocks).

@ How can one compute quickly an approximate solution Ty
for any value of 6 7

e Variational formulation of the PDE
1
T, = argmin - / ko VTP — T
T 2Jg
Same thing as in linear algebra (A symmetric):

1
T =AFy, = argmin 5 (T,AT) — (Fo, T)
T
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Model Reduction: Reduced Basis

Lemma (Reduced Basis)
Assume that the quantities [, V' Tg -V Ty and
qu ﬂJTe*(k) are given for 1 < q < Q blocks and 1 < k, k' < K

snapshots, then solving for any 6 € R? the finite dimensional
Reduced basis (RB) solution:

1
TQ(K) = argmin —/ Ko |VT|2 + /T
0

T espan( Té‘(l) ..... T

requires O(K® + QK?) operations.
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Reduced Basis: A posteriori error computation

Lemma (RB a posteriori error)
Assume that the quantities [ div(1q,V Tow)div(le, VTg,.)
and qu Vi - VT;(,() are given for 1 < q,q < Q blocks and

1 < k, k' < K snapshots, then computing for any 0 € R? the
following Reduced basis (RB) a posteriori error estimate:

EVO(0) = [|div(keV (Tg — To)) iz

requires only O(Q?K?) operations, and in particular does not
require the exact solution T, .
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Reduced Basis: greedy-like strategies

Remark (RB greedy improvement)

o Example: O(K + 1) := argmax,.s EX)(0).
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Model problem: thermal block problem

@ Numerical Non-typical (for 6 different from 6(k),

k =1...K) Solutions:

. .| D‘u
NS [T

(a) 7 snapshots (b) 65 snapshots

Figure: UpLeft: exact T}, UpRight: reduced Ty
BottomLeft: error E(6)

— snapshots must be well-adapted .
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5) Frugal Sampling of Posterior (or Rare Event)
distributions
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Bayesian conductivity estimation problem

o Let m(d0) = mprior(dOy ... dbg) denotes the
manufacturer's prior probability distribution modeling this
uncertainty (e.g.: i.i.d. log-normal).
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Figure: Typical under mprior
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Bayesian conductivity estimation problem

@ Observation of an atypically large temperature :

10

08

06

04

02

00

(a) Observation points 00 02 04 06 08 10
X1,...,Xy with normal errors (b) Atypical observed
N(0,¢). temperature x — tops(X).

@ Want: infer the posterior distribution of conductivities
and e.g. sup, T§.
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Bayesian sampling problem (atypical observation)

@ Solution: Monte Carlo sample the posterior probability
distribution (Bayes rule):

néosterior (de)
= Law.(© | (Te(X) = tons(x;) + N(0,€)),_; )
1 J o1 2
— T~ Z2uj=1 E(tobs(xj) XJ ) de
e
Z(tobs) ( )

o Atypical observation®: Ent(n geior | ™) > 1 with

perhaps log-likelihood with local minima.

2(Ent=relative entropy = Kullback-Leibler divergence)
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Importance Sampling with reduced posterior

@ Our methodology (Adaptive Reduced Tempering — ART)
is based on the (Sequential) Monte Carlo sampling of the
reduced posterior (frugal) flow:

() (d0) =

776 ,posterior

1

L B (tons ) - TS (002
20t T e )

e [ € [0,1] is the tempering parameter (interpolates
between prior § = 0 and posterior § = 1).

° Te(k) is computed for any # with reduced basis based on k
snapshots: Ty -+ Tow:-
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Importance Sampling with reduced posterior

o Key idea: Increase tempering (5 and number of snapshots
k at the same time.

o For each k, one needs to find® an adapted 3%t

(k)

+1 posterior

find next f¥t st.: Ent(m31 osterior | M ) = do(given

Lemma (meta) (Diaconis Chatterjee 2018)

The cost of Importance sampling of target n by proposal 7 is
given by exp(Ent(n | 7)).

@ Practice: 15 osterior(d0) too expensive. Replaced (thanks
to a posteriori error estlmatlon) by frugal pessimistic

ansatz: | T;(x) — tobs(X)| — Tg(k)( ) — tobs(X )‘+E(k (0)

3Ent = relative entropy = K.-L. divergence.
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Importance Sampling with reduced posterior

o The inverse temperature 3.1 can be interpreted as an
approximate critical 8 for the matching between exact
(k)
77;7posterior and reduced nB,posterior'
@ One can then use a learning function in order to sample a
new snapshot (O(k + 1), T§,,,)) with current clones:

an+1 ,posterior

1
SMC sample ©(k + 1) according to ?eTE(k)(G) (k) (49)

@ The parameter 7 > 0 favors parameters 6 with a large
error E()(6) (under-represented in previous snapshots

o(1)...6(k)).
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Importance Sampling with reduced posterior

Pseudo-Code (Adaptive Reduced Tempering algorithm)
@ Sample N i.i.d. parameters according to o (d6)

o While B < 1, Sequential Monte Carlo sampling of flow:

k
ﬁ = né,[))osterior(de)

)

+1,posterior
posterior error E(¥)).

@ Sample new snapshot (©(k + 1), T*(©(k + 1)) within
clones with distribution n(Ak) -
Bk+1,posterior

5 k o
until nék diverges from nEHLpOSterior (use a

e Compute TS (kr1) and iterate k — k+1
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Numerical Results [C.,H.,R. 2023 and 2024]
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Numerical Results [C.,H.,R. 2023 and 2024])

e Kolmogorov-Smirnov (KS) distance (to "truth") of the
distribution of maximum temperature sup,.q To(x):

107 1
x cost

(b) KS distance versus
computational log-cost for
(a) Typical a posterior

temperature field versus Non-Reduced
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Numerical Results [C.,H.,R. 2023 and 2024])

e Computational gain here: ~ 10 for given precision

@ In terms of exact eval.: 150 snapshots evaluation
(Reduced Tempering) versus 10° snapshots (nonReduced)

@ Potential gain here ~ 5000 if true model oo expensive.
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